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Abstract. Starting from the assumption that the generators of quantum supergroup are
not supercommutatives with the coordinates of quantum superplane instead of usual
supercommutativity in the Manin approach, we construct in a natural way the two-parameter
quantum supergroup. The virtue of this formulation is that it leads to many probable quantum
superplanes associated with a given quantum supergroup. Some interesting examples are
presented. As a by-product of this formulation, a correspondence between the one- and two-
parameter deformed differential structures on the quantum superplane is presented.

1. Introduction

In recent years a great deal of activity has been directed towards the exploration of quantum
groups and algebras [1–3]. These structures may be viewed as deformations of classical Lie
groups and algebras. The latter are recovered when some parameters, called deformation
parameters, take some particular values. The mathematical framework of these objects is the
Hopf algebra, an algebra provided with operations called the coproduct, counit and antipode.
A quantum group is a non-commutative Hopf algebra consistent with these costructures.

In the viewpoint proposed by Manin [4, 5] a quantum group is identified with
endomorphisms acting upon a quantum space, called a quantum plane, the coordinates of
which are non-commutative. The condition for such a mapping to be an endomorphism
constitutes the quantum group commutation relations. However, this is realized with
an additional requirement which consists of taking elements of the quantum group
and coordinates of the quantum plane which commute with each other. The natural
generalization to the supercase was also performed following the above Manin approach
[5–7].

In a recent paper [8], the authors have relaxed the assumption that elements of the
quantum group commute with coordinates of the quantum plane. By introducing special
commutation relations depending on someqij between elements of the quantum group and
non-commutative coordinates, they were naturally led to the two-parameter deformation
GLp,q(2) of the groupGL(2) and its corresponding quantum planes. They showed also
that there is a possibility of constructing many quantum planes for a given quantum group
GLp,q(2).

In the present paper, we will generalize the above investigation to the supercase. Before
to do this let us give the Manin approach of the quantum supergroups. The natural
generalization in the case of supergroups, corresponding to the one-parameter deformation,
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is the quantum supergroupGLq(1|1) which may be viewed as the superanalogue ofGLq(2).
It has been studied by sevral authors [9–11]. It consists of the deformation of the supergroup
of 2× 2 non-singular matrices with two bosonic and two fermionic elements.

Let M be an element ofGLq(1|1):
M =

(
a β

γ d

)
(1)

wherea, d are bosonic elements andβ, γ are fermionic ones.GLq(1|1) is defined by the
following supercommutation relations:

aβ = qβa dβ = qβd
aγ = qγ a dγ = qγ d
γβ + βγ = 0 β2 = γ 2 = 0

ad − da = (q−1− q)βγ.

(2)

Manin [5] has defined, in correspondance with the quantum supergroupGLq(1|1), a
quantum superplane (or quantum superspace) as a quadraticZ2-graded algebra generated
by a pair ofx bosonic andθ fermionic coordinates obeying

xθ = qθx q 6= 0, 1

θ2 = 0.
(3)

GLq(1|1) appears as a supersymmetry group in the sense that the points(x ′, θ ′) and
(x ′′, θ ′′) obtained from the point(x, θ) by transformation underM, equation (1), and its
supertranspose

stM =
(
a −γ
β d

)
(4)

respectively, satisfy the same supercommutation relations as in (3), i.e.x ′θ ′ = qθ ′x ′, θ ′2 = 0
andx ′′θ ′′ = qθ ′′x ′′, θ ′′2 = 0, where

M :

(
x

θ

)
7→
(
x ′

θ ′

)
=
(
a β

γ d

)(
x

θ

)
(5)

and

stM :

(
x

θ

)
7→
(
x ′′

θ ′′

)
=
(
a −γ
β d

)(
x

θ

)
. (6)

In fact, Manin [5] did not use the supertranspose transformation to obtain half of the
supercommutation relations (2), but he introduced a dual quantum superplane the basic
quadratic relations of which remain invariants under transformationM.

A remarkable fact here is that relations (3) are invariant not only under the transformation
M but also under its supertransposestM when one makes use of the assumption that the
elements of the quantum supergroup supercommute with the coordinates of the quantum
superplane. In this work we will relax the latter assumption. This naturally leads to the
two-parameter deformation even though we do not suppose any restriction on the number
of parameters at the outset.

Now let us recall the two-parameter quantum supergroupGLp,q(1|1) [5–7]. It is
generated by elements of the matrixM which satisfy the supercommutation relations

aβ = pβa dβ = pβd
aγ = qγ a dγ = qγ d
pβγ + qγβ = 0 β2 = γ 2 = 0

ad − da = (q−1− p)βγ.

(7)
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It is clear that the one-parameter case in (2) is recovered in the limitp = q. Note that
these relations (7) can be written in the form of asuper-RTTequation [12]. It can easily be
seen that the quadratic relations (3) are now not invariant under the transformation (6), but
only under that in (5). However, if one requires invariance under the two tranformations
with the assumption that generators of the quantum supergroup supercommute with the
coordinates of the quantum superplane, one is led to the one-parameter quantum supergroup.
Now, if we relax the above assumption, we will be led naturally to the two-parameter
quantum supergroup [5–7] in such manner that the supercommutation relations (7) come
directly from the condition that the quadratic relations (3) are preserved under both
transformations (5) and (6). This will be done without taking any restriction on the
number of parameters at the outset. Our starting point is some special supercommutaion
relations between The elements of the quantum matrixM, equation (1), and the coordinates
of the quantum superplane. It appears that the quantum supergroup generators do not
supercommute with the coordinates of the quantum superplane generically.

The paper is organized as follows. In section 2, we shall construct the two-parameter
quantum supergroup the elements of which do not supercommute with the coordinates of
quantum superplane. This formulation leads us to many probable quantum superplanes
associated with a given quantum supergroup. Section 3 is devoted to the discussion of
some special examples. We elaborate also a correspondence between the one and the
two-parameter deformed differential structures on the quantum superplane (3). Concluding
remarks follow in section 4.

2. Two-parameter quantum supergroup as Manin symmetry

Let the quantum matrixM, equation (1), be an element of a quantum supergroup such that
we have

xa = q11xa θa = q21aθ

xβ = q12βx θβ = −q22βθ

xγ = q13γ x θγ = −q23γ θ

xd = q14dx θd = q24dθ

(8)

where theqij are arbitrary complex parameters and let us assume that the quadratic
relations (3) are transformed underM in (5) and its supertransposestM in (6), respectively,
as

x ′θ ′ = q̄θ ′x ′ θ ′2 = 0 (9)

and

x ′′θ ′′ = ¯̄qθ ′′x ′′ θ ′′2 = 0. (10)

Then we obtain

(i) M =
(
a β

γ d

)
∈ GLp,q ′(1|1) for some non-zerop, q ′ with pq ′ 6= −1

(ii) q̄ = ¯̄q

(iii)

q11 = k q21 = qq̄q ′−1p−1k

q12 = q̄p−1k q22 = qq̄2q ′−1p−2k

q13 = q̄q ′−1k q23 = qq̄2q ′−2p−1k

q14 = q̄2q ′−1p−1k q24 = qq̄3q ′−2p−2k

(11)
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where k is an arbitrary complex number. Note that if one requires thatqij = 1, then
q̄ = p = q ′ = q andM ∈ GLq(1|1).

In what follows, we will prove the above statement. The converse is trivial. Starting
from equations (9) and (10), it follows that

aγ = q1γ a dγ = q2γ d

γ 2 = 0 if q13 6= 0

qq14ad − q̄q21da = qq̄q12γβ + q23βγ

(12)

and
aβ = q3βa dβ = q4βd

β2 = 0 if q12 6= 0

qq14ad − ¯̄qq21da = −q ¯̄qq13βγ − q22γβ

(13)

whereq1 = q̄q11q
−1
13 , q2 = qq14q

−1
23 , q3 = ¯̄qq11q

−1
12 andq4 = qq14q

−1
22 .

If we require that the matrixM be an element of a quantum supergroup, then the above
relations (12) and (13) must be consistent with the costructure of the Hopf algebra. The
coproduct1 and the antipodeS are defined [13] by

1

((
a β

γ d

))
=
(
a β

γ d

)
⊗̇
(
a β

γ d

)
=
(
a ⊗ a + β ⊗ γ a ⊗ β + γ ⊗ d
γ ⊗ a + d ⊗ γ γ ⊗ β + d ⊗ d

)
(14)

and

S

((
a β

γ d

))
=
(
S(a) S(β)

S(γ ) S(d)

)
=
(
a β

γ d

)−1

. (15)

Note that the multiplication in the tensor product of the quantum supergroups is defined by
(a ⊗ b)(c ⊗ d) = (−1)b̂ĉ(ac ⊗ bd) where, as usual,̂b denotes the parity ofb (equal to 0
for bosonic generators and to 1 for fermionic ones). So, from the consistence1(γ 2) = 0,
1(aγ ) = q11(γ a) and1(dγ ) = q21(γ d), it follows thatq1 = q2 = q ′ and

ad − da = q ′γβ + q ′−1βγ. (16)

On the other hand, the consistence ofβ2 = 0, aβ = q3βa anddβ = q4βd with 1 implies
that q3 = q4 = p and

ad − da = −pβγ − p−1γβ (17)

from which and (16) we deduce that

pβγ + q ′γβ = 0 (18)

unlesspq ′ = −1. Hence, we obtain the two-parameter quantum deformationGLp,q ′(1|1)
of GL(1|1), namely

aβ = pβa dβ = pβd
aγ = q ′ ga dγ = q ′γ d
pβγ + q ′γβ = 0 β2 = γ 2 = 0

ad − da = (q ′−1− p)βγ

(19)

which proves thatM ∈ GLp,q ′(1|1) with pq ′ 6= −1. Next, the definition of the antipodeS
given by (15) implies the existence of the inverse matrixM−1. So, if we set

M−1
L =

(
1−1

1 0

0 1−1
2

)(
d mβ

nγ a

)
=
(
1−1

1 d m1−1
1 β

n1−1
2 γ 1−1

2 a

)
(20)
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such thatM−1
L M = 1, we obtainm = −p, n = −q ′, 11 = da−pβγ and12 = ad−q ′γβ.

On the other hand, if we take the right inverseM−1
R of M as

M−1
R =

(
sd m′β
n′γ s ′a

)(
1−1

1 0

0 1−1
2

)
=
(
sd1−1

1 m′β1−1
2

n′γ1−1
1 s ′a1−1

2

)
(21)

it follows that s = s ′ = 1, m′ = −p−1, n′ = −q ′−1, 11 = ad − q ′−1βγ and
12 = da − p−1γβ. The elements11 and12

11 = da − pβγ = ad − q ′−1βγ (22a)

12 = ad − q ′γβ = da − p−1γβ (22b)

are consistent with relations (17) and (18) and satisfy the following commutation relations:

a11− pq ′11a = (1− pq ′)12a

p−111β = pβ11 = p−112β = pβ12

q ′−111γ = q ′γ11 = q ′−112γ = q ′γ12

d11 = 11d

a12 = 12a

d12−12d = (1− pq ′)11d

1112+1211 = 12
1+12

2

(23)

from which it follows that

1−1
1 a − pq ′a1−1

1 = (1− pq ′)1−1
2 a + (q ′−1+ p)(p−2q ′−2− 1)βγ1−2

2 a

p−1β1−1
1 = p1−1

1 β = p−1β1−1
2 = p1−1

2 β

q ′−1γ1−1
1 = q ′1−1

1 γ = q ′−1γ1−1
2 = q ′1−1

2 γ

1−1
1 d = d1−1

1

1−1
2 a = a1−1

2

1−1
2 d − pq ′d1−1

2 = (1− pq ′)1−1
1 d − (p−2q ′−2− 1)(q ′−1+ p)βγ1−2

1 d

1−1
1 1−1

2 +1−1
2 1−1

1 = 1−2
1 +1−2

2

(24)

which are consistent with

M−1
L =

(
1−1

1 d −p1−1
1 β

−q ′1−1
2 γ 1−1

2 a

)
=
(

d1−1
1 −p−1β1−1

2

−q ′−1γ1−1
1 a1−1

2

)
= M−1

R . (25)

Now let us return to the third equations in (12) and (13). They should be identical to the
relation (17). Ifqq14 6= q̄q21, one writes the third equation in (12) asqq14ad−q̄q21da = rβγ
where r = q23 − qq̄pq ′−1q12. In the case whenr = 0, we havead = εda where
ε = q̄q21q

−1q−1
14 6= 1. However, the consistence with the fact that1(ad) = ε1(da)

leads us toε = 1, which yields a contradiction. Whenr 6= 0, there are two cases:
p 6= q ′−1 and p = q ′−1. For the first case, according to the relation (17), we have
(qq14(q

′−1− p)− r)ad = (q̄q21(q
′−1− p)− r)da which, in all possible cases, contradicts

the fact that11 and 12 are invertibles or thatε 6= 1. In the second case when
p = q ′−1, it follows that ad = da = sβγ for some numbers. However, the consistence
1(ad) = s1(βγ ) implies s = −p = q ′−1, which contradicts the existence of11 and12
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and the fact thatp = q ′−1. So we conclude thatqq14 = q̄q21. From a completely analogous
discussion, we obtainqq14 = ¯̄qq21 from the third equation in (13). Hence we have

q̄ = ¯̄q. (26)

Finally, we find the following conditions on theqij :

q ′ = q̄q11q
−1
13 = qq14q

−1
23

p = q̄q11q
−1
12 = qq14q

−1
22

qq14 = q̄q21

q ′−1− p = q−1q ′−1pq−1
14 q22− q̄q−1

14 q13.

(27)

Furthermore, if we multiply the two sides of the equality (17) byx andθ from the left and
pull them from the right, we obtain two additional conditions:

q11q14 = q12q13

q21q24 = q22q23

(28)

respectively. A straightforward calculation shows that we can express all of theqij in terms
of one unknownq11 = k which may be considered as a proportional constant. Explicitly,
we find the relations (11). This completes the proof of the statement.

From relations (19), it is obvious thatM ∈ GLp,q ′(1|1) if and only if stM ∈ GLq ′,p(1|1).
On the other hand, one can considerGLp,q ′(1|1) = GLq ′,p(1|1) in the sense thatGLp,q ′(1|1)
and GLq ′,p(1|1) form the sameZ2-graded free algebra generated bya, d, β, γ , 1−1

1
and1−1

2 modulo the relations (19) and (24) and by the equations(ad − pβγ )1−1
1 − 1,

1−1
1 (ad − pβγ ) − 1, (ad − q ′βγ )1−1

2 − 1 and1−1
2 (ad − q ′βγ ) − 1. Thus the Manin

approach considering the quantum supergroup as supersymmetry group is recovered under
the q-supercommutation relations (8) between the quantum supergroup generators and the
coordinates of the quantum superplane, where theqij are given by (11). We see that, if
we takeq = q̄ = q ′ = p, the parameterk remains arbitrary and the choicek = 1 appears
as a particular case. This means that also in the one-parameter case, one can take the
generators of the quantum supergroup and the coordinates of the quantum superplane to be
non-supercommutative. The assumption of supercommutativity is very special.

3. Quantum superplanes

This section is devoted to the discussion of several interesting choices of theqij . The
different possibilities of choosing theqij imply the possibility of constructing many quantum
superplanes associated with a given quantum supergroup. This formulation allows us to
make a correspondence between the one and two-parameter deformed differential structures
on the quantum superplane.

3.1. Case 1:q̄ = q
This case is the standard one of dealing with the quantum superplane. Then, taking
q11 = k = 1 for simplicity, we have

q11 = 1 q21 = q14 = q2q ′−1p−1

q12 = qp−1 q22 = q3q ′−1p−2

q13 = qq ′−1 q23 = q3q ′−2p−1

q14 = q2q ′−1p−1 q24 = q4q ′−2p−2.

(29)
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Now, let us introduce the graded exterior differentiald as in [7, 14, 15] except for the
following relations:

(dx)a = q11a dx (dθ)a = q21a dθ

(dx)β = −q12β dx (dθ)β = q22β dθ

(dx)γ = −q13γ dx (dθ)γ = q23γ dθ

(dx)d = q12d dx (dθ)d = q24d dθ

(30)

where theqij are given by (29), and suppose that the quadratic relationdx dθ = (1/p)dθ dx
of the exterior quantum superplane is preserved under the following transformations:

M ′ =
(
a −β
−γ d

)
and stM ′ =

(
a γ

−β d

)
(31)

respectively. Then we findq = q ′ and consequently the relations (29) reduce to

q11 = q13 = 1

q12 = q14 = q21 = q23 = qp−1

q22 = q24 = q2p−2.

(32)

With this formulation, we see that the quadratic relation between the differentials on
the quantum superplane is invariant not only under transformationM ′ but also under its
supertranspose. Note thatM ′ is an element ofGLp,q ′(1|1) as well asstM ′. In the following
we shall suppress the prime sign when we deal with transformations (31) of differentials.
This will not leads to ambiguity.

Now let us look at differential structure on the quantum superplane. This was
investigated by several authors [7, 14–16] both in the one or two-parameter deformation
cases. The latter investigations are based on the introduction of an exterior differential
operatord which satisfies the linearity, nilpotency(d2 = 0) and the graded Leibnitz rule.
In the one-parameter case [16], one can choose

dx dθ = 1

q
dθ dx

x dx = q2(dx)x

x dθ = q(dθ)x + (q2− 1)(dx)θ

θ dx = −q(dx)θ
θ dθ = (dθ)θ.

(33)

It is easy to see that the relations (33) are invariant under the transformationM and its
supertranspose. The two-parameter case may be obtained using the same method [7] [15].
One obtains the following scheme:

dx dθ = 1

p
dθ dx

x dx = pq(dx) dx
x dθ = q(dθ)x + (pq − 1)(dx)θ

θ dx = −p(dx)θ
θ dθ = (dθ)θ.

(34)
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In this case, one can easily check that the relations (34) are not invariant under transformation
stM if one assumes that the generatorsa, β, γ and d of the quantum supergroup
supercommute with the coordinatesx, θ of the quantum superplane. However, if we
choose the parametersqij as in (32), then it is straightforward, though tedious, to verify
that the relations (34) are invariant not only underM but also understM. Moreover, we
havedx ′ dx ′ = 0 anddx ′′ dx ′′ = 0.

3.2. Case 2:p = q ′

This case corresponds to the one parameter quantum supergroupGLq ′(1|1). The parameters
(qij ) in (11) become

q11 = 1 q21 = qq̄q ′−2

q12 = q13 = q̄q ′−1 q22 = q23 = qq̄2q ′−3

q14 = q̄2q ′−2 q24 = qq̄3q ′−4.

(35)

The quantum superplane such thatxθ = qθx corresponding to the values (35) of theqij
is transformed intox ′θ ′ = q̄θ ′x ′ and x ′′θ ′′ = q̄θ ′′x ′′ underM and its supertranspose,
respectively. Now, if we introduce the differentialsdx and dθ such thatdx dθ =
(1/p′)dθ dx and transformed intodx ′ dθ ′ = (1/p̄′)dθ ′ dx ′ and dx ′′ dθ ′′ = (1/p̄′)dθ ′′ dx ′′
under M and its supertranspose, respectively, then we must takep′ = q ′2q−1 and
p̄′ = q ′2q̄−1 when theqij are given by (35). In this case the scheme (34) becomes

dx dθ = q

q ′2
dθ dx

x dx = q ′2(dx)x

x dθ = q(dθ)x + (q ′2− 1)(dx)θ

θ dx = −q
′2

q
(dx)θ

θ dθ = (dθ)θ.

(36)

So, under transformationM we have

dx ′ dθ ′ = q̄

q ′2
dθ ′ dx ′

x ′ dx ′ = q ′2(dx ′)x ′

x ′ dθ ′ = q̄(dθ ′)x ′ + (q ′2− 1)(dx ′)θ ′

θ ′ dx ′ = −q
′2

q̄
(dx ′)θ ′

θ ′ dθ ′ = (dθ ′)θ ′

(37)
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and under the transformationstM we have

dx ′′ dθ ′′ = q̄

q ′2
dθ ′′ dx ′′

x ′′ dx ′′ = q ′2(dx ′′)x ′′

x ′′dθ ′′ = q̄(dθ ′′)x ′′ + (q ′2− 1)(dx ′′)θ ′′

θ ′′ dx ′′ = −q
′2

q̄
(dx ′′)θ ′′

θ ′′ dθ ′′ = (dθ ′′)θ ′′.

(38)

Thus, we obtain the two-parameter differential scheme on the quantum superplane which
is covariant under the one-parameter quantum supergroupGLq ′(1|1). This formulation
allows us to make correspondence between the one and two-parameter deformed differential
schemes as follows. First, if we takeq = q ′, then the parameters(qij ), equations (35),
reduce to the following:

q11 = 1

q12 = q13 = q21 = q̄q−1

q14 = q22 = q̄2q−2

q24 = q̄3q−3

(39)

and the scheme (36) reduces to the one in (33) depending only on one deformation parameter.
But under transformationM and its supertranspose, we obtain the differential schemes (37)
and (38), respectively. Hence, we obtain in this way the two-parameter differential scheme
from the one depending only on one deformation parameter. Second, if we takeq̄ = q ′,
then the expressions (35) of(qij )’s become

q1i = 1 q2i = qq ′−1 (40)

where i = 1, . . . ,4 and the schemes (37) and (38) reduce to the one-parameter deformed
differential schemes obtained from the two-parameter one in (36) under transformationM

and its supertranspose, respectively. Note that these differential constructions may also be
performed in the case of the quantum plane, although this was not done in [8]. Furthermore,
if we takeq = 1, then

q1i = 1 q2i = q ′−1 (41)

for i = 1, . . . ,4. This corresponds to the classical superplanexθ = θx and θ2 = 0
which is transformed under the action of quantum supergroupGLq ′(1|1) to the quantum
one,x ′θ ′ = q ′θ ′x ′ and θ ′2 = 0. But these new non-supercommutative coordinates do not
obey (8). Finally, in the case whereq = q̄ = 1 we have

q11 = 1

q12 = q13 = q ′−1

q14 = q21 = q ′−2

q22 = q23 = q ′−3

q24 = q ′−4.

(42)
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This case also seems to be of interest, since the quantum superplane looks like an ordinary
superplane in the sense that it is generated by supercommutative coordinates. The quantum
superplane corresponding toGLq ′(1|1) such thatq = q̄ = q ′ is the original one [5]. Indeed
in this case all of theqij are equal to 1.

4. Concluding remarks

The usual Manin approach that considers the quantum group as the symmetry group of
the quantum plane is based on the remarkable assumption that generators of the quantum
group commute with the coordinates of the quantum plane. The condition that the quadratic
relationxy = qyx is preserved under the action of the quantum matrixM and its transpose
gives the commutation relations of the quantum groupGLq(2). One can never obtain
the two-parameter quantum group. In this paper, we extended the above approach to the
supercase. It is also valid only in the one-parameter deformation case. Next, we have
relaxed the basic assumption of supercommutativity between coordinates and generators and
investigated its consequences. We are led in a natural way to the two-parameter deformation
of the supergroupGL(1|1) and its corresponding quantum superplanes though we do not
put any restriction on the number of parameters at the outset. With this formulation,
the Manin’s approach considering that quantum supergroups are supersymmetry groups
of quantum superplanes is still preserved and the different choices of theqij show that
there are many quantum superplanes for a given quantum supergroupGLp,q(1|1). There
are some interesting quantum superplanes such as the original one in the literature and
the classical superplane. When we considered the differential structure on the quantum
superplane, this formulation allows us to obtain the one-parameter differential scheme from
the two-parameter one and conversely according to special choices of theqij .
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