IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

On the two-parameter quantum supergroups and quantum superplanes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 31 2065
(http://iopscience.iop.org/0305-4470/31/8/017)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.104
The article was downloaded on 02/06/2010 at 07:23

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger31 (1998) 2065-2074. Printed in the UK PIl: S0305-4470(98)86752-8

On the two-parameter quantum supergroups and quantum
superplanes

E H Tahri and A El Hassouni

Universié Mohammed V, Facudt des Sciences, Laboratoire de PhysiquécFiyue, Av. |bn
Battota BP 1014, Rabat, Morocco

Received 5 August 1997

Abstract. Starting from the assumption that the generators of quantum supergroup are
not supercommutatives with the coordinates of quantum superplane instead of usual
supercommutativity in the Manin approach, we construct in a natural way the two-parameter
guantum supergroup. The virtue of this formulation is that it leads to many probable quantum
superplanes associated with a given quantum supergroup. Some interesting examples are
presented. As a by-product of this formulation, a correspondence between the one- and two-
parameter deformed differential structures on the quantum superplane is presented.

1. Introduction

In recent years a great deal of activity has been directed towards the exploration of quantum
groups and algebras [1-3]. These structures may be viewed as deformations of classical Lie
groups and algebras. The latter are recovered when some parameters, called deformation
parameters, take some particular values. The mathematical framework of these objects is the
Hopf algebra, an algebra provided with operations called the coproduct, counit and antipode.
A quantum group is a non-commutative Hopf algebra consistent with these costructures.

In the viewpoint proposed by Manin [4, 5] a quantum group is identified with
endomorphisms acting upon a quantum space, called a quantum plane, the coordinates of
which are non-commutative. The condition for such a mapping to be an endomorphism
constitutes the quantum group commutation relations. However, this is realized with
an additional requirement which consists of taking elements of the quantum group
and coordinates of the quantum plane which commute with each other. The natural
generalization to the supercase was also performed following the above Manin approach
[5-7].

In a recent paper [8], the authors have relaxed the assumption that elements of the
guantum group commute with coordinates of the quantum plane. By introducing special
commutation relations depending on somebetween elements of the quantum group and
non-commutative coordinates, they were naturally led to the two-parameter deformation
GL, ,(2) of the groupGL(2) and its corresponding quantum planes. They showed also
that there is a possibility of constructing many quantum planes for a given quantum group
GL,,(2).

In the present paper, we will generalize the above investigation to the supercase. Before
to do this let us give the Manin approach of the quantum supergroups. The natural
generalization in the case of supergroups, corresponding to the one-parameter deformation,
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is the quantum supergroupL, (1|1) which may be viewed as the superanalogu& af, (2).
It has been studied by sevral authors [9-11]. It consists of the deformation of the supergroup
of 2 x 2 non-singular matrices with two bosonic and two fermionic elements.

Let M be an element o&L,(1]1):

()

wherea, d are bosonic elements afj y are fermionic onesGL,(1|1) is defined by the
following supercommutation relations:

ap = qBa dp = qpd
ay =qya dy =qyd @
yB+By =0 B2=y?*=0

ad —da = (g7 — q)By.
Manin [5] has defined, in correspondance with the quantum superg@l|l), a
guantum superplane (or quantum superspace) as a quadgagiaded algebra generated
by a pair ofx bosonic and fermionic coordinates obeying

x6 = gOx q+#0,1

, @3)

0°=0.
GL,(1]1) appears as a supersymmetry group in the sense that the goings) and
(x”,0") obtained from the pointx, ) by transformation undeM, equation (1), and its
supertranspose

(3 )

respectively, satisfy the same supercommutation relations as in (3)gi.e ¢g6’x’, 6> = 0
andx”6” = q6"x", "% = 0, where

(060
w066 D0

In fact, Manin [5] did not use the supertranspose transformation to obtain half of the
supercommutation relations (2), but he introduced a dual quantum superplane the basic
guadratic relations of which remain invariants under transformatfon

A remarkable fact here is that relations (3) are invariant not only under the transformation
M but also under its supertranspo®¥d when one makes use of the assumption that the
elements of the quantum supergroup supercommute with the coordinates of the quantum
superplane. In this work we will relax the latter assumption. This naturally leads to the
two-parameter deformation even though we do not suppose any restriction on the number
of parameters at the outset.

Now let us recall the two-parameter quantum supergréup, ,(1|1) [5-7]. It is
generated by elements of the matfik which satisfy the supercommutation relations

ap = pBa dB = pBd
ay =qya dy =qyd

_ 2_ . 2_ @)
pBy +qyB=0 pe=r==0

ad —da = (¢~ — p)By.
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It is clear that the one-parameter case in (2) is recovered in the pimity. Note that
these relations (7) can be written in the form afuper-RTTequation [12]. It can easily be
seen that the quadratic relations (3) are now not invariant under the transformation (6), but
only under that in (5). However, if one requires invariance under the two tranformations
with the assumption that generators of the quantum supergroup supercommute with the
coordinates of the quantum superplane, one is led to the one-parameter quantum supergroup.
Now, if we relax the above assumption, we will be led naturally to the two-parameter
guantum supergroup [5-7] in such manner that the supercommutation relations (7) come
directly from the condition that the quadratic relations (3) are preserved under both
transformations (5) and (6). This will be done without taking any restriction on the
number of parameters at the outset. Our starting point is some special supercommutaion
relations between The elements of the quantum matrj>equation (1), and the coordinates
of the quantum superplane. It appears that the quantum supergroup generators do not
supercommute with the coordinates of the quantum superplane generically.

The paper is organized as follows. In section 2, we shall construct the two-parameter
guantum supergroup the elements of which do not supercommute with the coordinates of
guantum superplane. This formulation leads us to many probable quantum superplanes
associated with a given quantum supergroup. Section 3 is devoted to the discussion of
some special examples. We elaborate also a correspondence between the one and the
two-parameter deformed differential structures on the quantum superplane (3). Concluding
remarks follow in section 4.

2. Two-parameter quantum supergroup as Manin symmetry

Let the quantum matri®/, equation (1), be an element of a quantum supergroup such that
we have

xa = q11xa fa = gr1a6
xXB = q12px 0B = —q2280
Xy =qi3yx Oy = —qasyt
xd = q14dx 0d = q24d0
where theg;; are arbitrary complex parameters and let us assume that the quadratic

relations (3) are transformed undéf in (5) and its supertranspo8®/ in (6), respectively,
as

®)

x/e/ — q"é/x/ 9/2 — 0 (9)
and

x//e// — 6_79//)6// 9//2 = 0. (10)
Then we obtain
0] M = <Z 5) e GL, ,(1]1) for some non-zer, ¢’ with pg’ # —1
(i) i=q

qu==k g21=qqq *p~k (11)
(i) qi2=qp tk g22 = qq°q' 1 p~%k

q13=qq' 'k 423 = q3%q'~2p~k

qua=q%q"*p~k q24 = q3%q'?p~%k
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where k is an arbitrary complex number. Note that if one requires that= 1, then
g=p=q =qandM e GL,(1]1).

In what follows, we will prove the above statement. The converse is trivial. Starting
from equations (9) and (10), it follows that

ay = qiya dy = q2yd
y?=0 if g13#0 (12)
qqiaad — qgz1da = qqqi2y B + q238y

and
ap = qzfa dB = qapd

p?=0 if g10#0 (13)
qquaad — Gqanda = —q4quafy — q22vB

whereqy = §q11913 42 = 4914923+ 43 = 491191 aNdqa = qq1aq5; -

If we require that the matrid be an element of a quantum supergroup, then the above
relations (12) and (13) must be consistent with the costructure of the Hopf algebra. The
coproductA and the antipod& are defined [13] by

A((a ﬂ>>:<a ,3)®<a ﬂ>:<a®a+,3®y a®ﬁ+y®d> a4
y d y d y d y®a+d®y yQp+ded

and
1

S S a B
(D)= -6 0"
y d Sy) S y d

Note that the multiplicgition in the tensor product of the quantum supergroups is defined by
(a ®b)(c®d) = (—1)*(ac ® bd) where, as usuak denotes the parity o (equal to O
for bosonic generators and to 1 for fermionic ones). So, from the consistefjc® = 0,
Aay) = q1A(ya) and A(dy) = g2A(yd), it follows thatg; = g2 = ¢’ and

ad —da =q'yB +q" *By. (16)

On the other hand, the consistencefdf= 0, af = g3fa anddp = g4Bd with A implies
thatgs = g4 = p and

ad —da = —pBy — p~'yB (17)
from which and (16) we deduce that

pBy +q'yp=0 (18)
unlesspq’ = —1. Hence, we obtain the two-parameter quantum deformaginp , (1|1)
of GL(1]1), namely

af = ppa dp = ppd

=gq dy =q'yd
ay =4 f%’a 12/ qz)/ (19)
pBy +4q'vyB=0 pe=y“=0

ad —da = (¢ — p)By

which proves thaf € GL, ,(1]1) with pg" # —1. Next, the definition of the antipode
given by (15) implies the existence of the inverse mamx!. So, if we set

Yt — ATt 0 d mB\ ([ A'd mA'B 20
Vo At \n “\nazly At (20)
2 Y a ni, 'y 2 a
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such thatM,*M = 1, we obtainn = —p, n = —¢/, Ay = da — pBy andA, = ad —q'yB.
On the other hand, if we take the right invers&* of M as

. sd m'B\ (At O sdATY m'BAG?
MR = ’ ’ -1 = ’ -1 ’ -1 (21)
n'y sa 0 A n'y Al s'ai;
it follows thats = s/ = 1, m' = —p™%, n = —q”l, A1 = ad — q”l,By and
Ay =da — p~tyB. The elements\; and A,
Ay =da— ppy =ad —q' By (22a)
Ar=ad—q'yp=da—p 'y (220)

are consistent with relations (17) and (18) and satisfy the following commutation relations:
al1— pq'Ara = (1— pq)Aza
prALB = pBAL= p T Ap = pBA,
g Ay =q'yAr=q" Ay =4’y A,
dAy = Ad (23)
alAy = Aoa
dAy — Apd = (1— pg')Ard
A1Ay 4+ AgAy = A2 4 A
from which it follows that
At'a—pg'anit = (1 - pg) A a+ (gt + p)(p2q 2 = DBy Aa
pPTBALT = pATTB = pTIBAT = pAS
gy AT =q' Ay =y A = gAYy
ATtd =dATt (24)
Agla = aAgl
Ayld — pg'dAyt = (L—pgArtd — (P72 2 = (¢ + By A%
ATIAY + ASTATY = ATR AP

which are consistent with

) AT —pATTB datt  —pTBAG i
M =< I A—1 -1 >=< —1., A—1 -1 )ZMR' (25)
—q'A;7y Asa —q Ty A al,

Now let us return to the third equations in (12) and (13). They should be identical to the
relation (17). Ifgq14 # gq21, one writes the third equation in (12) @$14ad—Ggo1da = rBy
wherer = g¢23 — qGpq’~*q12. In the case whem = 0, we havead = eda where
€ = qunq—lqull # 1. However, the consistence with the fact thefad) = €¢A(da)
leads us toe = 1, which yields a contradiction. When # 0, there are two cases:

p # ¢t and p = ¢'~1. For the first case, according to the relation (17), we have
(9q14(¢'~* — p) — r)ad = (§g21(¢'~* — p) — r)da which, in all possible cases, contradicts
the fact thatA; and A, are invertibles or that # 1. In the second case when
p = ¢'7%, it follows thatad = da = sBy for some numbes. However, the consistence
A(ad) = sA(By) impliess = —p = ¢’~1, which contradicts the existence af; and A,
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and the fact thap = ¢'~*. So we conclude thatgi4 = gg21. From a completely analogous
discussion, we obtaingi14 = gg21 from the third equation in (13). Hence we have

q9=q. (26)
Finally, we find the following conditions on theg;:
4 = 4911915 = 991495
P =q9141; = 991495 2
94914 = 4421
q = p=q""pa 922 — 94 D13
Furthermore, if we multiply the two sides of the equality (17)xmnd6 from the left and
pull them from the right, we obtain two additional conditions:
q11914 412913 (28)
421924 = {22423
respectively. A straightforward calculation shows that we can express all gf;tireterms
of one unknowng;; = k which may be considered as a proportional constant. Explicitly,
we find the relations (11). This completes the proof of the statement.
From relations (19), it is obvious thaf € GL, ,(1|1) if and only if M € GL, ,(1|1).
On the other hand, one can considet, ,(1/1) = GL, ,(1|1) in the sense tha& L, , (1|1)
and GL, ,(1]1) form the sameZ,-graded free algebra generated by d, 8, v, Agl
and A, modulo the relations (19) and (24) and by the equatians— pfy)A;* — 1,
ATYad — pBy) — 1, (ad — ¢'By)A;t — 1 and A (ad — ¢'By) — 1. Thus the Manin
approach considering the quantum supergroup as supersymmetry group is recovered under
the g-supercommutation relations (8) between the quantum supergroup generators and the
coordinates of the quantum superplane, wheregtheare given by (11). We see that, if
we takeq = g = ¢’ = p, the parametek remains arbitrary and the choiée= 1 appears
as a particular case. This means that also in the one-parameter case, one can take the
generators of the quantum supergroup and the coordinates of the quantum superplane to be
non-supercommutative. The assumption of supercommutativity is very special.

3. Quantum superplanes

This section is devoted to the discussion of several interesting choices aqf;thelhe
different possibilities of choosing thg; imply the possibility of constructing many quantum
superplanes associated with a given quantum supergroup. This formulation allows us to
make a correspondence between the one and two-parameter deformed differential structures
on the quantum superplane.

3.1.Caselg =g¢q

This case is the standard one of dealing with the quantum superplane. Then, taking
q11 = k = 1 for simplicity, we have

qu=1 g21= qua = q%q'"1p~t
qr2=qp* g22=q%q'1p~? 29)
qi3=qq' " g3 = q%q'?p~t

2 7-1,.-1 4 _1-2 72.

qiua=4q49 °p q2a=4q°q “p
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Now, let us introduce the graded exterior differentialas in [7, 14, 15] except for the
following relations:

(dx)a = qria dx (dB)a = g1a db

(dx)B = —q12B dx (dO)B = q22B dO

(dx)y = —qi3y dx (dO)y = g3y dO

(dx)d = q12d dx (dO)d = qoad dO

where they;; are given by (29), and suppose that the quadratic relatiaté = (1/p)d6 dx
of the exterior quantum superplane is preserved under the following transformations:

M = ( “ _'3> and Sy’ = < ¢ y) (31)
-y d —B d
respectively. Then we fing = ¢’ and consequently the relations (29) reduce to

(30)

quu=quz=1
G12=qua=qa1=qu=qp " (32)

q22 = q2a = q°p~2.

With this formulation, we see that the quadratic relation between the differentials on

the quantum superplane is invariant not only under transformato6mut also under its
supertranspose. Note that' is an element of5 L, ,(1|1) as well as’™’. In the following

we shall suppress the prime sign when we deal with transformations (31) of differentials.

This will not leads to ambiguity.

Now let us look at differential structure on the quantum superplane. This was
investigated by several authors [7, 14-16] both in the one or two-parameter deformation
cases. The latter investigations are based on the introduction of an exterior differential

operatord which satisfies the linearity, nilpotendyi> = 0) and the graded Leibnitz rule.
In the one-parameter case [16], one can choose

1
dxdf = —db dx
q

xdx = qz(dx)x

xdf = q(do)x + (q> — 1)(dx)0 (33)
0dx = —q(dx)0
0do = (do)6.

It is easy to see that the relations (33) are invariant under the transfornitiand its

supertranspose. The two-parameter case may be obtained using the same method [7] [15].

One obtains the following scheme:

dxdf = ldG dx
p

xdx = pq(dx)dx

xdf = q(dB)x + (pg — D)(dx)0
0dx = —p(dx)6

0do = (do)6.

(34)
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In this case, one can easily check that the relations (34) are not invariant under transformation
sy if one assumes that the generaters 8, y and d of the quantum supergroup
supercommute with the coordinates 6 of the quantum superplane. However, if we
choose the parameteys; as in (32), then it is straightforward, though tedious, to verify
that the relations (34) are invariant not only undérbut also undef. Moreover, we
havedx’dx’ = 0 anddx” dx” = 0.

3.2. Case 2.p =4’

This case corresponds to the one parameter quantum supef@fQuf|1). The parameters
(gij) in (11) become

qu=1 g21=qqq >
q12=qi3=qq" " q22 = q23 = q4%q'~3 (35)
qua=G°q? g2 = qq%q"*.

The quantum superplane such th@t = g6x corresponding to the values (35) of thg

is transformed intax’6’ = g6’x’ and x”6” = ¢6”x” under M and its supertranspose,
respectively. Now, if we introduce the differentialscv and d6 such thatdxdf =
(1/p")d6 dx and transformed int@x’ d9’ = (1/p')d0’ dx’" anddx” d0” = (1/p')d6” dx"
under M and its supertranspose, respectively, then we must jdke= ¢’°¢~' and
P = q"?G~* when theg;; are given by (35). In this case the scheme (34) becomes

dxdo = L a0 dx
q/2

xdx = ¢%(dx)x

xdf = qdd)x + (¢ — 1)(dx)0 (36)

q/Z
fdx = ——(dx)6
q
0do = (do)6.
So, under transformatio™ we have
/ ’ q / /
dx' do’ = —/2d9 dx
q
X dx' = q/Z(dx/)x/
x'do’ = §(do")x' + (¢ — 1)(dx")o’ (37)
12

0'dx’ = —L_(ax)o'
q

0’ do’ = (d0")6'
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and under the transformatiét we have
dx// de// — ide// dx//
q/Z

x// dx// — q/Z(dx//)x//

X”d@” — c](d@”)x” + (q/Z _ 1)(dx//)9// (38)

2
0" dx" = —qT(dxH)QN
q

0// de// — (d@”)@”.

Thus, we obtain the two-parameter differential scheme on the quantum superplane which
is covariant under the one-parameter quantum supergé@Up(1|1). This formulation

allows us to make correspondence between the one and two-parameter deformed differential
schemes as follows. First, if we take= ¢’, then the parameterg;;;), equations (35),
reduce to the following:

qgu=1

qi2=q13=q1=qq "

) (39)

q14=q22=G°q"
Goa=Gq"°

and the scheme (36) reduces to the one in (33) depending only on one deformation parameter.
But under transformatio® and its supertranspose, we obtain the differential schemes (37)
and (38), respectively. Hence, we obtain in this way the two-parameter differential scheme
from the one depending only on one deformation parameter. Second, if wej take’,

then the expressions (35) ¢f;;)’s become

qu=1 g2 = qq'"* (40)

wherei = 1,...,4 and the schemes (37) and (38) reduce to the one-parameter deformed
differential schemes obtained from the two-parameter one in (36) under transformtion
and its supertranspose, respectively. Note that these differential constructions may also be
performed in the case of the quantum plane, although this was not done in [8]. Furthermore,
if we takeg = 1, then

qgu =1 g =q " (41)

for i = 1,...,4. This corresponds to the classical superplafie= 6x and#?> = 0
which is transformed under the action of quantum superg@ug (1/1) to the quantum
one,x'0’ = ¢'6’x’ and6’? = 0. But these new non-supercommutative coordinates do not
obey (8). Finally, in the case whete= g = 1 we have

qu=1

qrz=q3=4¢""

qua=qa=q"" (42)
g2=qn=4q"°

Goa = q/74.
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This case also seems to be of interest, since the quantum superplane looks like an ordinary
superplane in the sense that it is generated by supercommutative coordinates. The quantum
superplane corresponding @L, (1|1) such thay = g = ¢’ is the original one [5]. Indeed

in this case all of they,;; are equal to 1.

4. Concluding remarks

The usual Manin approach that considers the quantum group as the symmetry group of
the quantum plane is based on the remarkable assumption that generators of the quantum
group commute with the coordinates of the quantum plane. The condition that the quadratic
relationxy = gyx is preserved under the action of the quantum ma¥fixand its transpose

gives the commutation relations of the quantum gra@p,(2). One can never obtain

the two-parameter quantum group. In this paper, we extended the above approach to the
supercase. It is also valid only in the one-parameter deformation case. Next, we have
relaxed the basic assumption of supercommutativity between coordinates and generators and
investigated its consequences. We are led in a natural way to the two-parameter deformation
of the supergrougsz L(1]1) and its corresponding quantum superplanes though we do not
put any restriction on the number of parameters at the outset. With this formulation,
the Manin’s approach considering that quantum supergroups are supersymmetry groups
of quantum superplanes is still preserved and the different choices af;trshow that

there are many quantum superplanes for a given quantum supergyp(1|1). There

are some interesting quantum superplanes such as the original one in the literature and
the classical superplane. When we considered the differential structure on the quantum
superplane, this formulation allows us to obtain the one-parameter differential scheme from
the two-parameter one and conversely according to special choices @f the
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